StatsCalculators.com

Negative Binomial Distribution

Calculator

Parameters

Distribution Chart

Enter parameters and calculate to view the distribution

Learn More

What is the Negative Binomial Distribution?

The negative binomial distribution models the number of failures before achieving a specified number of successes in a sequence of independent Bernoulli trials. Each trial has the same probability of success (p).

Probability Mass Function:P(X=k)=(k+r1k)pr(1p)kP(X = k) = \binom{k+r-1}{k} p^r (1-p)^k

Where:

  • rr is the number of successes needed
  • kk is the number of failures before achieving rr successes
  • pp is the probability of success on each trial

Properties

  • Mean: E(X)=r(1p)pE(X) = \frac{r(1 - p)}{p}
  • Variance: Var(X)=r(1p)p2Var(X) = \frac{r(1 - p)}{p ^ 2}

How to Calculate Negative Binomial Distribution in R

R
library(tidyverse)
r <- 3    # number of successes needed
p <- 0.4  # probability of success on each trial

# Calculate P(X = 10)
prob_exact <- dnbinom(7, size = r, prob = p)
print(str_glue("P(X = 10): {prob_exact}"))

# Calculate P(X <= 12)
prob_cumulative <- pnbinom(9, size = r, prob = p)
print(str_glue("P(X <= 12): {prob_cumulative}"))

# Calculate mean and variance
mean <- r/p
variance <- r * (1-p)/(p^2)
print(str_glue("Mean: {mean}"))
print(str_glue("Variance: {variance}"))

# Plot PMF
x <- 0:20
pmf <- dnbinom(x, size = r, prob = p)
pmf_df <- data.frame(x = x, pmf = pmf)

ggplot(pmf_df, aes(x = x, y = pmf)) +
  geom_col() +
  labs(
    x = "Number of failures before r successes",
    y = "Probability",
    title = "Negative Binomial Distribution PMF"
  ) +
  theme_minimal()

How to Calculate Negative Binomial Distribution in Python

Python
import scipy.stats as stats
import numpy as np
import matplotlib.pyplot as plt

# Parameters
r = 3    # number of successes needed
p = 0.4  # probability of success on each trial

# Calculate P(X = 10)
prob_exact = stats.nbinom.pmf(7, r, p)
print(f"P(X = 10): {prob_exact:.4f}")

# Calculate P(X <= 12)
prob_cumulative = stats.nbinom.cdf(9, r, p)
print(f"P(X <= 12): {prob_cumulative:.4f}")

# Calculate mean and variance
mean = r/p
variance = r * (1-p)/(p**2)
print(f"Mean: {mean:.4f}")
print(f"Variance: {variance:.4f}")

# Plot PMF
x = np.arange(0, 21)
pmf = stats.nbinom.pmf(x, r, p)
plt.figure(figsize=(10, 6))
plt.vlines(x, 0, pmf, colors="b", lw=2)
plt.plot(x, pmf, "bo", ms=8)
plt.xlabel("Number of failures before r successes")
plt.ylabel("Probability")
plt.title("Negative Binomial Distribution PMF")
plt.grid(True)
plt.show()