StatsCalculators.com

Standard Normal Distribution (Z) Table

The interactive Z table shows probabilities (areas) under the standard normal distribution curve for given z-scores. It is used to find the probability of a value falling within a specific range in a normally distributed dataset.

How to Use the Z Table

  1. Find the z-score's ones digit and first decimal place in the leftmost column
  2. Find the second decimal place in the top row
  3. The intersection gives you the probability
  4. Hover over any value to see the shaded area in the distribution chart

Examples of Using the Z Table

Example 1: Z = 1.84

  1. Locate 1.8 in the left column
  2. Find 0.04 in the top row
  3. The intersection gives 0.9671, meaning P(Z < 1.84) = 0.9671
  4. P(Z > 1.84) = 1 - P(Z < 1.84) = 1 - 0.9671 = 0.0329
R
pnorm(1.84)

Example 2: Z = -1.25

There are two ways to calculate P(Z < z) for negative z-scores:

  • Simply choose the negative z-scores tab on the table above and locate the z-score
  • Symmetry property: P(Z < z) = 1 - P(Z < z)

Let's use the symmetry property for this example:

  1. Use the symmetry property: P(Z < -1.25) = 1 - P(Z < 1.25)
  2. Find P(Z < 1.25) in the table: 0.8944
  3. Calculate: P(Z < -1.25) = 1 - 0.8944 = 0.1056
R
1 - pnorm(1.25)
# or
pnorm(-1.25)

Pro Tip:

  • For P(Z > a), calculate 1 - P(Z < a)
  • For P(a < Z < b), calculate P(Z < b) - P(Z < a)
  • Remember that the total area under the curve equals 1

Related Calculators