StatsCalculators.com

Wilcoxon Signed-Rank Test Critical Values Table

Wilcoxon signed-rank table provides critical values for the Wilcoxon signed-rank test. Use this table to determine the critical value for your test statistic. Reject H0H_0 if the test value is less than or equal to the value given in the table.

nα = 0.05α = 0.025α = 0.01α = 0.005
1--------
2--------
30000
40000
52000
63200
75310
88531
910853
10131085
111713108
1221171310
1325211713
1430252017
1535302420
1641352824
1747413328
1853473833
1960534338
2067604943
2175675549
2283756255
2391836962
24100917669
251101008476
261201109284
2713012010192
28141130110101
29152141120110
30163152130120
31175163141130
32188175152141
33201188163152
34214201175163
35228214188175
36242228201188
37256242214201
38271256228214
39286271242228
40302286257242
41319302272257
42336319288272
43353336304288
44371353321304
45389371338321
46408389356338
47427408374356
48446427392374
49466446412392
50486466431412

Note: '--' indicates that the critical value is not available for the given sample size and significance level.

How to Use This Table

  1. Determine your sample size (n)
  2. Choose between one-tailed or two-tailed test
  3. Select your desired significance level (α)
  4. Find the critical value in the table
  5. Compare your calculated test statistic with the critical value

Generating This Table in R

You can generate the Wilcoxon signed-rank critical values table using R with the following code:

R
# Function to generate Wilcoxon signed rank critical values table for one-sided tests
generate_wilcoxon_critical_values_one_sided <- function(max_n = 50) {
  alpha_levels <- c(0.05, 0.025, 0.01, 0.005)
  result <- data.frame(n = 1:max_n)
  
  for (alpha in alpha_levels) {
    col_name <- paste0("alpha_", alpha)
    result[[col_name]] <- numeric(max_n)
    
    for (n in 1:max_n) {
      # For small n, qsignrank may not be able to compute exact values
      tryCatch({
        result[n, col_name] <- qsignrank(alpha, n)
      }, error = function(e) {
        result[n, col_name] <- "--"
      })
    }
  }
  
  return(result)
}

# Generate the table
critical_values_one_sided <- generate_wilcoxon_critical_values_one_sided(50)
print(critical_values_one_sided)

This code uses R's qsignrank function to compute the critical values for different sample sizes and significance levels. For two-tailed tests, you would need to adjust the alpha values accordingly.

Related Calculators