StatsCalculators.com

Uniform Distribution Calculator

Calculator

Parameters

Distribution Chart

Click Calculate to view the distribution chart

Learn More

Uniform Distribution: Definition, Properties, and Applications

Definition

The uniform distribution describes a probability distribution where all outcomes in an interval are equally likely to occur.

The probability density function (PDF) is given by:f(x)={1bafor axb0otherwisef(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases} The cumulative distribution function (CDF) is:F(x)={0for x<axabafor axb1for x>bF(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } a \leq x \leq b \\ 1 & \text{for } x > b \end{cases}

Properties

  • Mean: μ=a+b2\mu = \frac{a + b}{2}
  • Variance: σ2=(ba)212\sigma^2 = \frac{(b - a)^2}{12}
  • Support: [a, b]
  • Constant probability density over the interval
  • Symmetric around the mean

Related Calculators